News
Summers Will Not Finish Semester of Teaching as Harvard Investigates Epstein Ties
News
Harvard College Students Report Favoring Divestment from Israel in HUA Survey
News
‘He Should Resign’: Harvard Undergrads Take Hard Line Against Summers Over Epstein Scandal
News
Harvard To Launch New Investigation Into Epstein’s Ties to Summers, Other University Affiliates
News
Harvard Students To Vote on Divestment From Israel in Inaugural HUA Election Survey
C. Crick, visiting professor of Arranged From One Point Certain groups of three bases may not determine an amino acid. If in the original chain ABC was such a "nonsense group," the change to BBC in the new chain will not affect the formation of the protein, Crick pointed out. Thus restoring the second group ACB restores the protein. Actually this description is oversimplified. Crick said, for he feels that more than one group of three bases is necessary to determine an amino acid. Thus while there are only 20 amino acids, there may be more than 50 "sense" triplet groups of bases, groups which influence amino-acid formation. Most geneticists hold this view, Crick stated, but many biochemists disagree, claiming that there are fewer than 30 "sense" triplet groups. Crick's experiments involved the nucleic acid of bacteriophage, cells which destroy bacteria. Each "phage" will only lyse specific bacteria. Changes in genetic structure in the phage can therefore be observed in the failure of the phage to exist on its specific bacteria. At the beginning of his lecture Crick pointed out that geneticists in the past had been extremely reluctant to give up mistaken ideas. "I've often wondered what would happen," he said, "if the gene turned out to be polysaccharide."
Arranged From One Point Certain groups of three bases may not determine an amino acid. If in the original chain ABC was such a "nonsense group," the change to BBC in the new chain will not affect the formation of the protein, Crick pointed out. Thus restoring the second group ACB restores the protein. Actually this description is oversimplified. Crick said, for he feels that more than one group of three bases is necessary to determine an amino acid. Thus while there are only 20 amino acids, there may be more than 50 "sense" triplet groups of bases, groups which influence amino-acid formation. Most geneticists hold this view, Crick stated, but many biochemists disagree, claiming that there are fewer than 30 "sense" triplet groups. Crick's experiments involved the nucleic acid of bacteriophage, cells which destroy bacteria. Each "phage" will only lyse specific bacteria. Changes in genetic structure in the phage can therefore be observed in the failure of the phage to exist on its specific bacteria. At the beginning of his lecture Crick pointed out that geneticists in the past had been extremely reluctant to give up mistaken ideas. "I've often wondered what would happen," he said, "if the gene turned out to be polysaccharide."
Arranged From One Point Certain groups of three bases may not determine an amino acid. If in the original chain ABC was such a "nonsense group," the change to BBC in the new chain will not affect the formation of the protein, Crick pointed out. Thus restoring the second group ACB restores the protein. Actually this description is oversimplified. Crick said, for he feels that more than one group of three bases is necessary to determine an amino acid. Thus while there are only 20 amino acids, there may be more than 50 "sense" triplet groups of bases, groups which influence amino-acid formation. Most geneticists hold this view, Crick stated, but many biochemists disagree, claiming that there are fewer than 30 "sense" triplet groups. Crick's experiments involved the nucleic acid of bacteriophage, cells which destroy bacteria. Each "phage" will only lyse specific bacteria. Changes in genetic structure in the phage can therefore be observed in the failure of the phage to exist on its specific bacteria. At the beginning of his lecture Crick pointed out that geneticists in the past had been extremely reluctant to give up mistaken ideas. "I've often wondered what would happen," he said, "if the gene turned out to be polysaccharide."
Arranged From One Point
Certain groups of three bases may not determine an amino acid. If in the original chain ABC was such a "nonsense group," the change to BBC in the new chain will not affect the formation of the protein, Crick pointed out. Thus restoring the second group ACB restores the protein. Actually this description is oversimplified. Crick said, for he feels that more than one group of three bases is necessary to determine an amino acid. Thus while there are only 20 amino acids, there may be more than 50 "sense" triplet groups of bases, groups which influence amino-acid formation. Most geneticists hold this view, Crick stated, but many biochemists disagree, claiming that there are fewer than 30 "sense" triplet groups. Crick's experiments involved the nucleic acid of bacteriophage, cells which destroy bacteria. Each "phage" will only lyse specific bacteria. Changes in genetic structure in the phage can therefore be observed in the failure of the phage to exist on its specific bacteria. At the beginning of his lecture Crick pointed out that geneticists in the past had been extremely reluctant to give up mistaken ideas. "I've often wondered what would happen," he said, "if the gene turned out to be polysaccharide."
Certain groups of three bases may not determine an amino acid. If in the original chain ABC was such a "nonsense group," the change to BBC in the new chain will not affect the formation of the protein, Crick pointed out. Thus restoring the second group ACB restores the protein. Actually this description is oversimplified. Crick said, for he feels that more than one group of three bases is necessary to determine an amino acid. Thus while there are only 20 amino acids, there may be more than 50 "sense" triplet groups of bases, groups which influence amino-acid formation. Most geneticists hold this view, Crick stated, but many biochemists disagree, claiming that there are fewer than 30 "sense" triplet groups. Crick's experiments involved the nucleic acid of bacteriophage, cells which destroy bacteria. Each "phage" will only lyse specific bacteria. Changes in genetic structure in the phage can therefore be observed in the failure of the phage to exist on its specific bacteria. At the beginning of his lecture Crick pointed out that geneticists in the past had been extremely reluctant to give up mistaken ideas. "I've often wondered what would happen," he said, "if the gene turned out to be polysaccharide."
Certain groups of three bases may not determine an amino acid. If in the original chain ABC was such a "nonsense group," the change to BBC in the new chain will not affect the formation of the protein, Crick pointed out. Thus restoring the second group ACB restores the protein.
Actually this description is oversimplified. Crick said, for he feels that more than one group of three bases is necessary to determine an amino acid. Thus while there are only 20 amino acids, there may be more than 50 "sense" triplet groups of bases, groups which influence amino-acid formation.
Most geneticists hold this view, Crick stated, but many biochemists disagree, claiming that there are fewer than 30 "sense" triplet groups.
Crick's experiments involved the nucleic acid of bacteriophage, cells which destroy bacteria. Each "phage" will only lyse specific bacteria. Changes in genetic structure in the phage can therefore be observed in the failure of the phage to exist on its specific bacteria.
At the beginning of his lecture Crick pointed out that geneticists in the past had been extremely reluctant to give up mistaken ideas. "I've often wondered what would happen," he said, "if the gene turned out to be polysaccharide."
Want to keep up with breaking news? Subscribe to our email newsletter.